
Incrementalizing	 𝜆-Calculi	 by	
Static	 Differentiation���
A Theory of Changes for Higher-Order
Languages and Ongoing Work

Paolo Giarrusso PPS, 22-01-2015���
(with Yufei Cai, Tillmann Rendel, Klaus
Ostermann)���
���
Tübingen University

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C

Incrementalizing	 𝜆-Calculi	 by���
Static	 Differentiation	

Problem: Incremental computation
✔ Support for a language with first-class functions!
✔ Mechanized proof in Agda
✔ Implementation in Scala
✔ Performance case-study

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C

Optimized���
incremental���
program

Incremental���
program

Program

2

x1

f

y1

3

x1

f f

y1

x2

y2

4

f f

x1

y1

x2

y2

5

f f

x1

y1

x2

y2

6

f f

x1

y1

x2

y2

7

f invoked���
again! L

General	 examples	

• Task: Compute statistics on a database of all
citizens of France
•  Each time something changes, update statistics
• Changes are small
• Can update results without recomputation?

• Variant: statistics on Twitter timelines
• And keep these statistics up-to-date in real-time.

8

Examples	

• Task: typecheck & compile a program, or a
proof script (say, in Coq)
• Change: Update a basic definition of the program
• Changes are still “small”
• Can update results without recomputation?

9

f f

x1

y1

x2

y2

10

Running	 example	

• Sum numbers from a collection
• Base input collection x1: {{1,1,2,3,4}}
• Updated input collection x2: {{1,2,3,4,5}}
• The collection is a bag (that is, a multiset)

•  Like in sequences, elements can be repeated
•  Like in sets, order is irrelevant

11

Example	

f coll = fold (+) 0 coll
y = f x

x1 = {{1,1,2,3,4}} base input���
y1 = 1 + 1 + 2 + 3 + 4 = 11 base output
x2 = {{1,2,3,4,5}} upd. input

y2 = 1 + 2 + 3 + 4 + 5 upd. output

 = 15 = s1 – 1 + 5

12

f f

x1

y1

x2

y2

13

x1 x2 dx = x2 ⊖ x1

y1 y2 = y1 ⊕ dy dy = y2 ⊖ y1

f f

14

f’ x1 dx

x1 x2 dx = x2 ⊖ x1

y1 y2 = y1 ⊕ dy dy = y2 ⊖ y1���
 = f’ x1 dx

f f

15

Example	

f coll = fold (+) 0 coll
y = f x

x1 = {{1,1,2,3,4}}���
y1 = 11
x2 = {{1,2,3,4,5}}

dx = {{1,2,3,4,5}} ⊖ {{1,1,2,3,4}} = {{5, 1}}

y2 = x1 ⊕ f’ x1 dx = 11 ⊕ (–1 + 5)
 = 15

16

Derivatives	

f’ is the derivative of f if
• input: base input x1; a change dx valid for x
• output: change dy valid for base output (f x)
• correctness:

(f x1) ⊕ (f’ x1 dx) = f (x1 ⊕ dx)

• Notation: application binds tighter than
anything

f x1 ⊕ f’ x1 dx = f (x1 ⊕ dx)

17

Using	 derivatives:	 idea	

First, base computation:
y1 = f x1

Later, incremental computation “algorithm”:
y2 = y1 ⊕ dy = y1 ⊕ f’ x1 dx

instead of
y2 = f (x1 ⊕ dx)

18

Setting	

• An algebraic theory of change structures for
functions
•  To specify and reason about the problem
• Using dependent types!

• A code transformation Derive produces
derivatives of programs
•  simply-typed λ-calculus programs (STLC), parameterized

by a plugin for constants and base types

19

Proof	 strategy	

We decompose our transformation into 2 phases
•  non-standard denotational semantics

•  simply-typed λ-calculus programs (STLC) → type theory functions (Agda)

•  erasure to extract STLC programs
•  we should have used modified realizability?

• Proof each phase correct

Incremental���
program

Incremental���
function

Program

20

Signature	 of	 change	 structures	

Types
(C1) V type base type
(C2) 𝛥x type ∀ x : V change types
Operations
(C3) x1 ⊕ dx : V ∀ dx : 𝛥x1 update

(C4) x2 ⊖ x1 : 𝛥x1 difference

Algebraic equations

(C5) x1 ⊕ (x2 ⊖ x1) = x2 cancellation

21

Change	 structure	 for	 naturals	

Let’s define a change structure such that:

x ⊕ dx = x + dx

x2 ⊖ x1 = x2 – x1

like in the examples in the beginning of the talk.

22

Change	 structure	 for	 naturals	

So we define:

(C1) base type: ℕ
(C2) change types:���

 𝛥x = { dx ∈ ℤ | x + dx ≥ 0 }
(C3) x1 ⊕ dx = x1 + dx : ℕ

(C4) x2 ⊖ x1 = x2 – x1 : 𝛥x1

(C5) x1 ⊕ (x2 ⊖ x1) = x1 + (x2 – x1) = x2

23

Example	 derivatives	

Remember: y2 = y1 ⊕ dy = y1 ⊕ f’ x1 dx

id x = x
id’ x dx = dx���

f x = x + 5
f’ x dx = dx

24

Change	 structures	

• Algebraic theory of changes (ToC)
•  for equational reasoning

• Change types ≠ base type
•  (unlike calculus in math, Koch [2010], Gluche et al.

[1997] in CS)

• ToC is about mathematical functions (in type
theory), not programs

• ToC extended to programs through denotational
semantics

25

An	 equivalence	 of	 changes?	

• There can be multiple changes which “do the
same thing”

• Example:���
{{1,2,3,4,5}} ⊖ {{1,1,2,3,4}} can be represented
by {{5, 1}} or by “change 1 through +4”.

26

Change	 equivalence	 (d.o.e.)	

Take x ∈ V, dx1, dx2 ∈ 𝛥x���
dx1 ≜ dx2 iff

x ⊕ dx1 = x ⊕ dx2

that is, have same effect when applied.

{{1,2,3,4,5}} ⊖ {{1,1,2,3,4}} can be represented
by {{5, 1}} or by “change 1 through +4”, so
{{5, 1}} ≜ “change 1 through +4”

27

Changes	 also	 form	 a	 category	

• Objects: values of type V
• Arrows: an arrow from a to b is a (set of ≜
changes) going from a to b

28

Derived	 ops	 give	 a	 category	

Derived ops

0x = x ⊖ x nil change

dx1 ⊙ dx2 = (x1 ⊕ dx1) ⊕ dx2 ⊖ x1

 change composition

Derived algebraic equations
x ⊕ 0x = x right unit for ⊕
dx ⊙ 0 ≜ 0 ⊙ dx ≜ dx composition unit
(dx1 ⊙ dx2) ⊙ dx3 ≜ dx1 ⊙ (dx2 ⊙ dx3)

 composition associativity

29

(Static)	 Differentiation	

• Given a (simply-typed) 𝜆-term f:

• f’ is a 𝜆-term, the derivative of f
• f’ can be optimized further!
• Correctness (proved in Agda):

⟦ f (a ⊕ da) ⟧ =	 ⟦ f a ⊕ Derive(f) a da⟧

30

Derivative f’ Program f

Derive

“Derivatives”	 are	 non-linear!	

• Set f’ = Derive(f)
• f’ a (da ⊙ db) =���
f’ a da ⊙ f’ (a ⊕ da) db ≠���
f’ a da ⊙ f’ a db

31

Vs	 calculus	

• That’s because a ⊕ da can’t be approximated
with a, unlike in calculus:
•  changes do not “tend to zero” (“infinitesimal”), they are

finite

• Incremental calculi (ours and other ones) are
thus closer to the calculus of finite differences
than the one of derivatives.

32

Vs	 differential	 lambda	 calculus	
• Contrast with linearity in differential lambda
calculus:���
∂f/∂x·(dx + dy) = ∂f/∂x·dx + ∂f/∂x·dy

• You can model ∂f/∂x·dx with the substitution x
↦ x ⊕ dx… as f[x ↦ x ⊕ dx] ⊖ f

• But it cannot be linear substitution!
• We must compute f on the new value of x, that
is x ⊕ dx, so we substitute everywhere.

33

• ⟦ f (a ⊕ da) ⟧ =	 ⟦ f a ⊕ f’ a da⟧
• ⟦ f (a ⊕ da ⊕ db) ⟧ =	 ⟦ f a ⊕ f’ a (da ⊙ db) ⟧

• ⟦ f a ⊕ f’ a (da ⊙ db) ⟧ = ⟦ f (a ⊕ da ⊕ db) ⟧ =
⟦ f a ⊕ f’ a da ⊕ f’ (a ⊕ da) db) ⟧

34

Derivative	 examples	 #1	

idT = 𝜆 (x : T). x
idT’ = Derive(idT) = 𝜆 (x : T) (dx : 𝛥T). dx

• 𝛥T, not 𝛥x

•  no dependent types

• 𝛥T is expanded by Derive
• changes (dx) are first-class

35

First-class	 functions	

36

First-class	 functions	

• Functions are data
• So they can change!
• Concretely, a closure changes if data in its
environment changes

37

x1 x2 dx

y1 y2 dy

f f

38

x1 x2 dx

y1

f2 f1

39

y2 dy

x1 x2 dx

y1

f2 f1

40

y2 dy

df

f’

x1 x2 dx

f f

41

y1 y2 dy

Derivatives	 →	 function	 changes	

From:

f’ x1 dx = f x2 ⊖ f x1 = y2 ⊖ y1 = dy

to:

df x1 dx = f2 x2 ⊖ f1 x1 = y2 ⊖ y1 = dy

• Function values change, e.g. because data in
closures change!

• Change structure for functions in paper

42

Change	 structure	 for	 functions	

Δσ → τ = 𝜆 (f: ⟦σ → τ⟧) →���
 Σdf : ∀(x : ⟦σ⟧) (dx : Δ x) → Δ (f x) valid (f, df)

43

Derivative	 examples	 #2	

idT = 𝜆 (x : T). x
idT’ = Derive(idT) = 𝜆 (x : T) (dx : 𝛥T). dx
appTU = 𝜆 (f : T → U) (x : T). f x
appTU’ = Derive(appTU) =

 𝜆 (f : T → U) (df : 𝛥(T → U))
 (x : T) (dx : 𝛥T). df x dx T). df x dx

𝛥(T → U) = T → 𝛥T → 𝛥U

44

Language	

T ::= ι | T1 → T2 #
t ::= #
 s t | 𝜆xT. t | xT | c#

Base types and constants specified by a language
plugin.

45

Deriving	 terms	

We require that Derive satisfies admissible
rule:

Γ ⊦ t : T #
Γ, ΔΓ ⊦ Derive (t) : ΔT #

Δι = … #
Δ(T1 → T2) = T1 → ΔT1 → ΔT2 #

46

Deriving	 terms	

Derive(s t) = Derive(s) t Derive(t) #
Derive(𝜆x. t) = 𝜆x dx. Derive(t)#

Return changes:

Propagate changes:

Derive(x) = dx #

Change of primitives:
Derive(c) = dc #

47

Deriving	 terms	

• The derivative only “follows” the computation
propagating changes

• Derivatives of primitives receive inputs and
changes, and should compute output changes
efficiently

48

Incrementalizing	 𝜆-calculi	
• Language plugins define datatypes and their
change structures

• They also define primitives and how to handle
them

• Use existing/new research

49

Which	 primitives?	

• 1st-class functions ⇒ few primitives (e.g. folds)
required, other ops (e.g. map) in libraries

• Primitives encapsulate efficiently
incrementalizable skeletons

50

Example	

f coll = fold (+) 0 coll���
y = f x
coll₀ = {{1,1,2,3,4}}���
coll₁ = {{1,2,3,4,5}}

dcoll = {{1,2,3,4,5}} ⊖ {{1,1,2,3,4}} = {{5, 1}}

What about the removal of 1?

51

Example	

sum s = fold (+) 0 s���
y = sum coll

dsum s ds = … = fold (+) 0 ds���
dy = dsum coll dcoll

coll₀ = {{1,2,3,4}}���
coll₁ = {{2,3,4,5}}
dcoll = {{2,3,4,5}} ⊖ {{1,2,3,4}} = {{1, 5}}

52

Running	 example	 &	 primitives	

f coll = fold (+) 0 coll���
y = f x

x1 = {{1,1,2,3,4}}
x2 = {{1,2,3,4,5}}

dx = {{1,2,3,4,5}} ⊖ {{1,1,2,3,4}} = {{5, 1}}

What about 1, i.e. the removal of 1?

53

Running	 example	 &	 primitives	

f coll = fold G coll���
y = f x
x1 = {{1,1,2,3,4}}
x2 = {{1,2,3,4,5}}

dx = {{1,2,3,4,5}} ⊖ {{1,1,2,3,4}} = {{5, 1}}

// if dG is the nil change of G

df x1 dx = fold’ G dG x1 dx = … = fold G dx = 4���
dy = df x1 dx

54

G abelian group!

Caching	 intermediate	 results	

Derive(s t) = Derive(s) t Derive(t) #
The derivative reuses results:

• Term t was already computed! We could reuse
the result, but we do not save it…#

• Right now, if t is needed, you must recompute
it.

• Up to now: focus on cases you don’t need it
• Present work: reusing Liu&Teitelbaum [1995]

55

Performance	 case	 study	 (based	
on)	 MapReduce:	

0.1$

1$

10$

100$

1000$

10000$

1k$ 2k$ 4k$ 8k$ 16k$ 32k$ 64k$ 128k$ 256k$ 512k$ 1024k$2048k$4096k$

Run$me'(ms)'

Input'size'

Incremental$ Recomputa:on$

56

In	 the	 paper…	

• Change structure for���
first-class functions!

• A code transformation���
for 𝜆-calculi

• A mechanized correctness proof���
(in Agda, with denotational semantics & logical
relations)

• Some hints on applying ToC
• Implementation, language plugin with bags and
maps, and performance case study in Scala

57

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C

A Theory of Changes for Higher-Order Languages
Incrementalizing �-Calculi by Static Differentiation

Yufei Cai Paolo G. Giarrusso Tillmann Rendel Klaus Ostermann
Philipps-Universität Marburg

Abstract
If the result of an expensive computation is invalidated by a small
change to the input, the old result should be updated incrementally
instead of reexecuting the whole computation. We incrementalize
programs through their derivative. A derivative maps changes in
the program’s input directly to changes in the program’s output,
without reexecuting the original program. We present a program
transformation taking programs to their derivatives, which is fully
static and automatic, supports first-class functions, and produces
derivatives amenable to standard optimization.

We prove the program transformation correct in Agda for a
family of simply-typed �-calculi, parameterized by base types
and primitives. A precise interface specifies what is required to
incrementalize the chosen primitives.

We investigate performance by a case study: We implement in
Scala the program transformation, a plugin and improve perfor-
mance of a nontrivial program by orders of magnitude.

Keywords Incremental computation, first-class functions, perfor-
mance, Agda, formalization

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features; D.3.4 [Pro-
gramming Languages]: Processors—Optimization

1. Introduction
Incremental computation has a long-standing history in computer
science [21]. Often, a program needs to update its output efficiently
to reflect input changes [23]. Instead of rerunning such a program
from scratch on its updated input, incremental computation research
looks for alternatives that are cheaper in a common scenario: namely,
when the input change is much smaller than the input itself.

For instance, consider the grand_total program, which calcu-
lates the sum of all numbers in collections xs , ys .

grand_total = �xs. �ys. fold (+) 0 (merge xs ys)

output = grand_total {{1, 1}} {{2, 3, 4}} = 11

With {{. . .}} we represent a multiset or bag, that is an un-
ordered collection (like a set) where elements are allowed to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PLDI ’14, June 9–11, 2014, Edinburgh, United Kingdom.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594304

appear more than once (unlike a set). Now assume that the in-
put xs changes from {{1, 1}} to {{1}}, and ys changes from
{{2, 3, 4}} to {{2, 3, 4, 5}}. Instead of recomputing output
from scratch, we could also compute it incrementally. If we
have a representation for the changes to the inputs (say, dxs =
{{remove 1}}, dys = {{add 5}}), we can compute the new
result through a function grand_total 0 that takes the old inputs
xs = {{1, 1}}, ys = {{2, 3, 4}} and the changes dxs , dys to pro-
duce the output change. In this case, it would compute the change
grand_total 0 xs dxs ys dys = plus 4, which can then be used to
update the original output 11 to yield the updated result 15. We call
grand_total 0 the derivative of grand_total . It is a function in the
same language as grand_total , accepting and producing changes,
which are simple first-class values of this language. If we increase
the size of the original inputs xs and ys , the time complexity of
grand_total xs ys increases linearly, while the time complexity of
grand_total 0 xs dxs ys dys only depends on the size of dxs and
dys , which is smaller both in our example and in general.

To support automatic incrementalization, in this paper we intro-
duce the ILC (incrementalizing �-calculi) framework. We define
an automatic program transformation Derive that differentiates pro-
grams, that is, computes their derivatives; Derive guarantees that

f (a� da) ⇠= (f a)� (Derive(f) a da) . (1)

where ⇠= is denotational equality, da is a change on a and a� da
denotes a updated with change da , that is, the updated input of f .
Hence, we can optimize programs by replacing the left-hand side,
which recomputes the output from scratch, with the right-hand side,
which computes the output incrementally using derivatives.

ILC is based on a simply-typed �-calculus parameterized by
plugins. A plugin defines (a) base types and primitive operations, and
(b) a change representation for each base type, and an incremental
version for each primitive. In other words, the plugin specifies the
primitives and their respective derivatives, and ILC can glue together
these simple derivatives in such a way that derivatives for arbitrary
simply-typed �-calculus expressions using these primitives can be
computed. Both our implementation and our correctness proof is
parametric in the plugins, hence it is easy to support (and prove
correct) new plugins.

This paper makes the following contributions:
• We present a novel mathematical theory of changes and deriva-

tives, which is more general than other work in the field because
changes are first-class entities, they are distinct from base values
and they are defined also for functions (Sec. 2).

• We present the first approach to incremental computation for
pure �-calculi by a source-to-source transformation, Derive, that
requires no run-time support. The transformation produces an
incremental program in the same language; all optimization
techniques for the original program are applicable to the incre-
mental program as well. We prove that our incrementalizing

Conclusions	

• Incremental computation can give great
performance advantages

• Theory of Changes for describing incremental
computation
• maybe applicable to other approaches

• Lots of work to do
•  Lots of avenues for future work — talk to us!

58

Further	 optimizations	

• Since we create an incremental program, we
can optimize it!

• To avoid computing intermediate results we
don’t use, this time we transform abstractions to
be by-name lambdas.

• We could use absence analysis in the future.
• Further transformations possible.

59

References	

• [Liu&Teitelbaum 1995] Caching intermediate
results for program improvement. PEPM 1995.

• [Koch 2010] Incremental query evaluation in a
ring of databases. PODS 2010.

• [Gluche et al. 1997] Gluche, Grust,
Mainberger, and Scholl. Incremental updates
for materialized OQL views. In Deductive and
Object-Oriented Databases, Springer.

60

Questions?	

61

Static	 caching	

62

Static	 caching	

• Based on work of Liu&Teitelbaum [1995]
• Basic idea: remember and save intermediate
results of all computations

• Whenever a computation returns a value, save
the value for future reuse

• Each function returns a tuple:
•  its original return value
•  all intermediate results

63

Static	 caching	 &	 CBPV	

• What’s the correct notion of computation and
value?
•  First attempt: A-normal form
•  Is a partially applied curried function a value?
•  Should we save the result of primitives?

•  Result of pair constructors, introduction forms: not needed, because they
create values

•  Result of elimination forms: needed
•  Answer: we should save the result of computations, not of values, and

divide primitives accordingly

64

Change	 equivalence	

65

Change	 equivalence	

• A change can have different but ≜
representations, but they should not be
distinguished.

• Change operations (the ones in the signature)
preserve ≜.

• If a function only accesses changes via
operations in the signature, it preserves ≜.

• We’ll restrict attention to such functions.

66

Restrict	 attention	 to	 ≜-
respecting	 functions	
• We just restrict attention to function with
“abstract enough” types
• Change types must be abstract

• Those functions can only access changes with
the change interface …

• … so those functions can’t distinguish
equivalent changes!

67

In	 Ocaml	
module type Base = sig type v end;; #
module type Change = #
 functor (B: Base) -> #
 sig #
 type v = B.v#
 type dv (*sealed in structures!*) #
 val ⊕: v -> dv -> v #
 val ⊖: v -> v -> dv #
 end;; #

68

In	 Ocaml	

module type Change = sig #
 type v (*concrete in structures*) !
 type dv (*sealed in structures!*)#
 val oplus: v -> dv -> v #
 val ominus: v -> v -> dv #
end;; #

69

module type ChangeInt#
= sig #
 include Change with type v =
int#
 val plusDeriv : #

v -> dv -> v -> dv -> dv #
 end;; #

70

In	 Ocaml	

module ChangeIntStruct : ChangeInt#
 = struct#
 type v = int#
 type dv = int (* sealed! *) #
 let oplus v dv = v + dv #
 let ominus v2 v1 = v2 – v1 #
 let plusDeriv x dx y dy = dx +
dy #
 end;; #

71

Conjecture	 on	 d.o.e.	

“D.o.e. (≜) implies observational equivalence.”���
���
Open questions:
• must check that functions have “abstract
enough” dependent types

• we need a proof of parametricity for the type
theory we use
• we can express the change signature with ML module

system, and translate that to System Fomega through
techniques by (XXX citation) F-ing modules paper

72

Understanding	 our	 changes	
• Σx: V (Δx/≜) ≅ V × V
•  (A → B) × (A → B) ≅ (A → B × B) ≅ A → Σx: B (Δx/≜)
• A → Σx: B (Δx/≜) ≅ { f : Σx: A (Δx/≜) → Σx: B (Δx/≜) | f is a valid

derivative }

73

Understanding	 our	 semantics	

•  𝜆 V. Σx: V (Δx/≜) ≅ 𝜆 V. V × V monad
•  Is our semantics related to “just” a standard
categorical semantics in the Eilenberg-Moore
category of this monad?

74

A	 categorically-inspired	
semantics	
• Claim: it’s useful to design the definition of
change structures using category theory

• If we do that, we see that semantically
• Σv: V (Δv/≜) ≅ V × V

75

New	 slides	

76

XXX	

• Add extension of ToC to programs through
denotational semantics?

• Or just add proof strategy?
• Relate erasure to realizability!

77

Change	 equality:	 multiple	
representations	
A change can have multiple ≜ representations,
but they should not be distinguished.

Semantic functions should respect ≜; that’s
guaranteed if they only use the change signature.

78

Change	 equivalence	 (conjecture)	

• Thanks to parametricity for abstract types,
clients of Change can’t observe the difference
between d.o.e. changes, so d.o.e. changes are
observationally equivalent!

• We conjecture that all programs we want are
valid clients of Change & c. (we just didn’t
check yet).

• We need parametricity for the right language —
we conjecture F-ing modules is enough.

79

Warning	

• This presentation (and the paper) uses set theory
for “simplicity”

• In fact, our Agda formalization uses type
theory!

• 𝛥v is a dependent type of changes!
• 𝛥v1 and 𝛥v2 are disjoint iff v1 ≠ v2
• (XXX This is needed for the categorical
semantics)

80

• Changes DT for a type T have:
• a source of type T
• a destination of type T
• We have functions from
• (These aren’t necessarily computable)

81

